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Network diffusion under homophily and consolidation as a mechanism for social inequality 

 

Abstract 

 

DiMaggio and Garip (2011) define network externalities (where the value of a practice is a 

function of network alters that have already adopted the practice) as a mechanism 

exacerbating social inequality under the condition of homophily (where advantaged individuals 

poised to be primary adopters are socially connected to other advantaged individuals). The 

authors use an agent-based model of diffusion on a real-life population for empirical 

illustration, and thus, do not consider consolidation (correlation between traits), a population 

parameter that shapes network structure and diffusion (Blau and Schwartz 1984, Centola 

2015). Using an agent-based model, this paper shows that prior findings linking homophily to 

segregated social ties and to differential diffusion outcomes are contingent on high levels of 

consolidation. Homophily, under low consolidation, is not sufficient to exacerbate existing 

differences in adoption probabilities across groups, and can even end up alleviating inter-group 

inequality by facilitating diffusion. 
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Sociologists are interested in how social networks shape the distribution of resources (Lin 1993; 

Portes 1998), attitudes (Small, Lamont and Harding 2010), and behaviors (Boyd 1989, Marsden 

and Gorman 2001, Smith and Christakis 2010) in society. One line of inquiry focuses on relating 

network formation processes to social stratification outcomes. This work suggests that 

homophily – the tendency for actors to associate with similar others – leads to segregated 

social networks, and accordingly, to inter-group inequality in outcomes for which network 

peers offer a positive influence (DiMaggio and Garip 2011, Manzo 2013, Montgomery 1991). 

Researchers have used formal analysis or agent-based models to theorize on network-

induced unequal distributions in particular domains. Montgomery (1991), for example, has 

developed a mathematical model to connect job referral networks to wage inequality. Manzo 

(2013) has proposed a computational model to link network-based educational choice to 

educational disparities in France. In both examples, the authors argued that higher degrees of 

homophily in social ties (by ability in the former study, and by socio-economic status in the 

latter) lead to higher degrees of inequality (in wages in the former, and in educational 

attainment in the latter). 

In a recent article, DiMaggio and Garip (2011) – DG hereafter – generalized this 

argument to any good or practice that displays network externalities, that is, becomes more 

valuable (or less risky) to a person as more network peers adopt that good or practice. Network 

externalities, the authors argued, exacerbate inter-group inequality under the condition of 

homophily, that is, if advantaged individuals who are the likely primary adopters of a good or 

practice are socially linked to other advantaged individuals in the population. The authors 

illustrated this process with an agent-based model of Internet adoption in the United States, 
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sampling the agents from the 2002 General Social Survey (GSS) to produce realistic distributions 

of income, educational attainment, and race.  Similar to earlier work, the authors found, higher 

degrees of homophily (by income, education, and race) generate higher degrees of inequality in 

adoption. 

By using real-life data, DG’s empirical illustration presumed a particular state of the 

world as given, and did not fully take into account the context for homophilous tie formation. 

The fact that income, education, and race are highly correlated in the U.S. setting, for example, 

likely produced highly clustered and segregated networks even under low levels of homophily. 

In this paper, we argue that prior results linking homophily to network-based inequality 

depend on presumed correlations between different characteristics in a population. We are 

inspired by Blau and Schwartz’s (1984) seminal work which suggested consolidation – the 

correlation between traits in a population – as a key population parameter shaping social 

interactions. Centola (2015) recently used an agent-based model to investigate how homophily 

and consolidation jointly alter network structure and diffusion outcomes. 

We follow a similar strategy, but modify Centola’s model in two ways. Like DG, we first 

introduce status differences among individuals which affect adoption probability, and second 

compare group-specific adoption rates and equilibrium levels under different conditions of 

homophily and consolidation. We find that whether (and how much) homophily exacerbates 

inter-group inequality is contingent on the level of consolidation in the population. In what 

follows, we first situate our approach in the existing literature, then describe the novelty of our 

model, and finally discuss the implications of our results. 
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SOCIAL NETWORKS AS A MECHANISM FOR INEQUALITY 

Cumulative advantage from social networks? 

Sociologists have long regarded ‘cumulative advantage’ as a general mechanism for inequality 

that accrues greater increments of benefits to individuals that possess an initial advantage 

(Merton 1968; DiPrete and Eirich 2006). Empirical evidence has consistently found success 

leading to further success across a range of reward systems, most notably, in scholarly 

publications (Allison, Long and Krauze 1982, Lazega and Jourda 2016) and recognition (Cole 

1970, Reskin 1977), although the extent of support has varied by definition and method (van de 

Rijt et al. 2014, Salganik, Dodds and Watts 2006). 

A large sociological literature has also shown that social networks provide access to 

various resources – such as information on jobs (Granovetter 1974) or migration opportunities 

(Massey and Espinosa 1997), normative pressures to assume healthy behaviors (Smith and 

Christakis 2008) or to improve school performance (Burke and Sass 2008, Sacerdote 2011) – 

that help individuals get ahead. Research has suggested that social networks can perpetuate 

inequality to the extent that such network-based resources are uneven in their distribution or 

benefits across groups (e.g., Garip 2008, Lin 2002, Smith 2005). 

Scholars have only recently begun to connect these two lines of research, and consider 

social networks as a path toward cumulative advantage. In the area of labor markets, for 

example, scholars have argued that job referrals will increase wage inequality to the extent that 

workers of similar productivity are socially connected (Montgomery 1991, Arrow and 

Borzekowski 2004). In health research, studies have suggested that network effects in healthy 

behaviors will compound initial differences if high socio-economic status individuals associate 
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with one another (Pampel et al. 2010). In the field of education, researchers have attributed a 

wider gap in academic achievement to tracking, which puts students of similar academic 

standing together (Gamoran 2011).  

There are two common elements to these arguments. First, social networks are 

presumed to provide a positive influence in adopting a practice (in finding a job, taking up a 

healthy habit, or aiming for academic success). Second, social networks are assumed to be 

homophilous, that is, stratified by traits that are related to adoption probability (productivity, 

financial resources, or academic ability).  

There is vast evidence for each of these assumptions. Reviews of research on labor 

markets (Marsden and Gorman 2001), health (Smith and Christakis 2008), and education (Epple 

and Romano 2011) all suggest strong positive network effects in various outcomes. And studies 

of social network composition reveal a strong tendency towards homophily in many settings 

(Kandel 1978; McPherson et al. 2001; Rivera et al. 2010). But there is only limited empirical 

evidence for how network effects and homophily in social ties, in combination, compound 

initial advantages and widen existing disparities in the adoption of a practice.  

Challenges in empirically linking social networks to inequality 

It is difficult to establish a unified causal chain from network formation to network diffusion 

and inequality. The first obstacle is the lack of data. Longitudinal data sets that simultaneously 

track individuals’ network ties and behavior are rare, and when available, typically restricted to 

an institutional setting (e.g., schools in the AddHealth data). Such incomplete data, although 

useful for some questions, do not offer reliable measures of homophily or adoption levels in 

individuals’ social networks. 
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The second obstacle is the notorious difficulties in the identification of network effects 

(also referred to as network diffusion, peer effects, or endogenous interactions). Individuals 

might adopt a practice because prior adopters in their network offer information, help, or 

influence that makes that practice less risky or more beneficial. Or, individuals might adopt a 

practice simply because they are subject to similar unobserved contextual factors as the prior 

adopters. To discard the latter possibility, researchers search for instances where individuals in 

the same environment vary in their exposure to network effects (e.g., Liu et al. 2010). But, even 

then, it is hard to address the so-called ‘reflection problem’, that is, to establish that each 

individual is truly responding to the group-level behavior (rather than the group-level behavior 

simply reflecting the sum of individual choices) (Manski 1993).  

The third, and perhaps the thorniest, obstacle is the potential confounding of network 

formation and network diffusion. Individuals might self-select into a network in anticipation of 

engaging in a practice (for example, a student looking to improve academic performance might 

join a study group, and start working harder) (Elwert and Winship 2014). To address this issue 

of endogenous selection, researchers typically seek natural experiments assigning individuals to 

particular networks (e.g., Sacerdote 2001), or test the sensitivity of results to varying degrees of 

confounding (e.g., VanderWeele 2011). 

Needless to say, these issues become even more intractable in combination, making it 

very difficult to provide empirical evidence to existing claims in the literature that positive 

network effects in adoption and homophilous tie formation together increase inequality.  
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Formal and computational models of social networks and inequality 

A number of researchers have used formal analysis and computational models to investigate 

the network dynamics underlying cumulative advantage. Montgomery (1991) has proposed a 

social-learning model of a labor market, where employers can hire through referrals, and if so, 

pay higher wages. A mathematical model illustrated that, if workers are matched to their 

contacts in productivity, then the wage differences between high- and low-productivity workers 

will increase over time. Interestingly, if workers are matched to their contacts on characteristics 

unrelated to productivity (e.g., gender), and if there are initial differences in employment based 

on those characteristics (e.g., lower employment among women), wage inequality along those 

characteristics will also expand over time.  

More recent models have built on this set-up, and reached similar conclusions on the 

role of networks on labor market inequality (Arrow and Borzekowski 2004, Calvó-Armengol and 

Jackson 2004). But, these formal analyses relied on simple models to remain tractable. For 

example, Calvó-Armengol and Jackson’s (2004) work specified job search as a finite state 

Markov process, where transition in an agent’s employment state is dependent on the states of 

its network ties. The authors took network configuration as given, not emergent, although they 

did consider potential drop-outs from the network. Unlike Montgomery (1991), the authors 

also did not take into account homophily, that is, the tendency for high-ability workers to be 

connected to high-ability job candidates. 

Researchers have turned to agent-based models for more flexible specifications of 

network formation and diffusion. Agent-based models use computer-generated agents that 

follow rules for interacting with other agents and with their environment. The models simulate 



 8 

agents in interaction, and typically produce emergent macro-levels patterns that cannot be 

deduced from a simple aggregation of micro-level rules. Consequently, the models provide a 

critical tool for linking micro and macro level analysis, and for developing new theory (Bruch 

and Atwell 2015). Agent-based models do not solve the identification problems stated above, 

but they do allow researchers to create a complete (albeit synthetic) data set with no 

unobserved heterogeneity or endogenous selection, where the pure network effects can be 

isolated with counterfactual manipulations. 

These advantages led Manzo (2013) to employ an agent-based model to investigate the 

sources of educational inequality in France. In his model, agents of different socio-economic 

groups make educational choices based on their ability, perceived pay-offs, and (in some cases) 

choices of other agents in their own group. The results showed that the empirical stratification 

in the French data can only be generated in silico if the model incorporates network influences 

from within one’s own socio-economic group. In other words, network effects in educational 

choice, and homophily in social ties, together, provide a plausible explanation for the observed 

inequality in educational attainment in France. 

DiMaggio and Garip (2011) followed a similar strategy, and used an agent-based model 

to understand the racial disparities in Internet adoption in the United States. The authors 

argued that initial differences in income and education between whites and African-Americans 

would translate into an enduring gap in adoption rates if one presumes (in line with the 

empirical evidence) that prior adopters in an ego’s network encourage adoption, and that 

network alters are likely to resemble the ego in terms of income and education.  
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To fully grasp this idea, consider the first subscribers to home Internet service. These 

early adopters are likely to have sufficient financial and cultural resources (i.e., high income and 

education) to afford the new technology, and such individuals are disproportionately white in 

the U.S. context. Now consider the next round of subscribers. These individuals still need to 

have the requisite financial and cultural resources, but some also enjoy network externalities, 

that is, higher returns to the Internet as they can use the service to communicate with the 

earlier adopters. Now, if social ties were established at random, such externalities would be 

uniformly distributed in the population, and not change existing levels of inequality in adoption. 

But, as research shows, there is a high degree of homophily by education in personal networks 

in the United States, and even a higher degree of homophily by race (Marsden 1987, 1988). 

Introducing this pattern into the example, then, one can see that network externalities are 

bigger for the rich, better-educated and white individuals who are more likely to be connected 

to earlier adopters (who are also rich, better-educated and white). In this case, network 

externalities do not just perpetuate initial differences between the rich and the poor (or whites 

and African Americans), but externalities also make such differences larger than would be 

expected based on income or education differences alone. 

Driven to explain a real-life puzzle, DG struck a fine balance between using an agent-

based model to push theory on the one hand, and calibrating that model to fit the empirical 

case, on the other. Crucially, the authors did not create synthetic agents, but used the sample 

from the network module of the 2002 GSS to replicate the observed marginal and joint 

distributions of income, education, race, and network size in the United States.  
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Their algorithm first generates a network of connections among agents with a given 

degree of homophily.1 Each agent has a reservation price – a price at which it will subscribe to 

Internet service. The reservation price is an increasing function of income, education, and the 

share of network alters who have already adopted.2 The price of Internet service is a declining 

function of overall adoption level to reflect economies of scale. This set-up implies that an 

agent can adopt because its reservation price has increased due to prior adopters in its 

network, or because the price of the service has dropped below its reservation price due to 

adoption in the population.  At each time period, the algorithm computes each agent’s 

adoption outcome by comparing its reservation price to the price of the Internet, updates 

reservation prices and the price of the service, and runs until adoption reaches an equilibrium 

level in the population.  

The results showed that, as homophily increases in the network, the slope of the 

diffusion curve (which plots the cumulative proportion of adopters across time) becomes 

steeper. This is because individuals with an initial advantage (i.e., high income and education) 

become more likely to be connected to other advantaged individuals, who have lower 

reservation prices, compounding the network effects within this select group. But, this speed in 

adoption comes at a cost. As homophily rises in the network, the equilibrium adoption level in 

the population declines. While the practice diffuses quickly among the advantaged, it fails to 

spread to less advantaged groups. 

Considering the context for homophily 

Prior empirical, formal and computational analyses discussed above (and more 

comprehensively in DiMaggio and Garip’s (2012) review) put forth a common argument: Social 
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networks exacerbate inequality if social ties facilitate the adoption of beneficial practices, and if 

those ties exhibit homophily, that is, similarity in individual traits related to adoption.  

But, interestingly, in both Montgomery (1991) and DG, one observes significant 

disparities in adoption by a trait when social ties display homophily in that trait – even when 

the trait itself is unrelated to adoption advantage. Montgomery’s model implies surplus wage 

inequality by gender (which cannot be attributed to ability differences alone) if social networks 

exhibit homophily by gender (which itself does not affect employment outcomes, but only the 

size of the initial employed pool). Similarly, DG find inequality in Internet adoption by race 

(above and beyond what would be expected based on income and education differences) when 

social ties are homophilous with respect to race (a characteristic unrelated to individuals’ 

adoption propensity).  

These patterns should not surprise us given that homophily in a trait changes the 

network structure, and thus network diffusion, even if that trait does not directly affect 

individuals’ adoption probability. Then, any structural factor that relates to homophily should 

also have implications for inequality. 

One structural factor that moderates the implications of homophily is consolidation – 

the correlation among different traits in a society. Indeed, in their influential work, Blau and 

Schwartz (1984) declared homophily and consolidation as key parameters shaping social 

interactions. Low levels of homophily and consolidation, the authors predicted, ensure cross-

cutting social ties, and as a result, social cohesion in a community.3  

Centola (2015) represented this intuition with an agent-based model, and reached 

unexpected conclusions. Low levels of homophily and consolidation lead to a random network 
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structure, and fail to support the diffusion of a common norm (a proxy for social cohesion). 

Middle levels of homophily and consolidation, however, induce overlapping patterns of 

connections (or ‘wide bridges’) that are optimal for complex contagion – the process by which 

norms diffuse via reinforcement from multiple network alters (Centola and Macy 2007). 

Centola also showed that homophily and consolidation interact in their effect on 

diffusion. When consolidation is relatively high, for example, only low levels of homophily can 

create the social structure necessary to support successful diffusion. Because various traits are 

highly correlated, even slight increases in homophily lead to a highly-balkanized network, and 

stop diffusion in its tracks. When consolidation is at middle levels, however, middle and high 

levels homophily can also support effective diffusion. Because the traits are not as correlated in 

this case, increases in homophily do not immediately translate into a segregated network.  

Implications of homophily and consolidation for inequality 

Centola’s model is concerned only with network formation and diffusion, but his results 

could be used to understand how homophily and consolidation, in concert, can contribute to 

inter-group inequality. In this paper, we use Centola’s model, but modify it to resemble the DG 

set-up, where there is status differentiation in adoption probability. In effect, then, we replicate 

DG’s analysis with synthetic (rather than real-life) agents and generic (rather than calibrated) 

parameters, which allows us to vary not just homophily, but also consolidation (a factor the 

authors could not consider as they relied on the GSS sample with a fixed covariance structure). 

We argue that the effect of homophily on inter-group inequality depends on the level of 

consolidation in a society. Consider the extreme case of full consolidation, where traits in a 

population are perfectly correlated. If we know a person’s income, for example, we can 



 13 

perfectly predict his or her education, residential neighborhood, and so on. There is, effectively, 

a single axis of differentiation. Now consider the other extreme of no consolidation, where 

individuals are randomly scattered in the multi-dimensional trait space. If we know a person’s 

income, in this case, we still have no idea what their education or neighborhood is. There are 

multiple axes of differentiation. 

We expect that the contribution of homophily to inter-group differences in diffusion will 

vary greatly across these two cases. In the full consolidation case, even low levels of homophily 

will be sufficient to concentrate advantage, and generate differential diffusion across groups. 

Let’s presume (like DG) that there exists a status dimension, defined to be positively related to 

adoption probability, for instance, income. In a full consolidation setting, if individuals have a 

slight preference for similar alters (in terms of multiple characteristics, say income and 

education), then high income individuals will be more exclusively connected because they are 

also highly educated. Due to consolidation (even with dimensions that are not status related), 

an individual’s advantage in the status dimension will also be reflected in network alters, 

further compounding the differences in adoption between high- and low-income groups. 

In the lower consolidation case, by contrast, the power of homophily in connecting high-

status individuals, and in concentrating advantage, will be diluted by the lack of relational 

concentration in the status characteristic. Even under high homophily, since high earners could 

have any level of education, the preference for similar alters will not generate well-defined and 

exclusively high-earning groups. The advantage in adoption that comes from the status 

attribute of income, in other words, will not be consolidated. 
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This logic leads us to qualify DG’s findings. We argue that the high levels of inter-group 

inequality the authors observed, and connected to homophily, are in part due to the high level 

of consolidation in the sample from which the agents are drawn. Specifically, in the GSS sample, 

income, education and race are strongly correlated. Therefore, even a small degree of 

homophily (based on all three characteristics) is likely to generate a highly- balkanized network 

structure, and lead to inter-group differences in adoption. We argue that homophily bias alone 

will not be sufficient to generate inter-group inequality under lower levels of consolidation. 

Below, we describe our modeling strategy to theoretically investigate the implications of 

consolidation for the link between homophily and inter-group inequality. 

METHODS 

We use an agent-based model to create individuals with social identities and social ties. Similar 

to Centola’s (2015) model, individuals are first assigned social identities, or sets of 

characteristics. An individual’s identity defines his or her social distance to the other members 

of the population. Individuals then form connections based on social distance. As in DG, 

individuals form connections based on social distance across important dimensions. Once ties 

are established, individuals have the opportunity to influence behaviors of their network alters. 

This set-up closely resembles DG’s model, but differs in using synthetic (rather than real) 

identities for individuals. 

Generating the population 

To formalize, we assign individuals to a set of positions that can take on H possible values 

(heterogeneity) within D social dimensions (complexity). There are G individuals with each 

social position, and hence, N (= H x G) individuals in the population. DG consider a fixed number 
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of social dimensions (income, education, and race) with a fixed degree of heterogeneity. There 

are three equal-sized groups based on income (high, medium, and low), three groups based on 

educational degree (bachelor’s, high school, middle school or less), and two groups based on 

race (white and black). In our model, we make the number of dimensions (D), the number of 

social positions in each dimension (H), and the number of individuals in each position (G) 

flexible to be able to vary the extent of social differentiation. 

Establishing network ties 

DG compute the social distance between all pairs of individuals (defined as the Euclidean 

distance based on standardized values of three observed social dimensions: income, education, 

and race), and then establish ties between individuals such that homophily bias occurs with a 

given probability. We follow a similar logic, but create a more complex architecture. In a 

nutshell, this architecture allows us not only to define the distance between individuals 

according to their social positions to control homophily, but also to define the distance 

between positions across those dimensions, in order to control consolidation in a similar way. 

 

[FIGURE 1 HERE] 

 

Figure 1 illustrates the set-up that is developed originally by Watts, Dodds and Newman 

(2002), and refined subsequently by Centola (2015). The figure shows a branching tree of L = 4 

levels with a branching ratio of B = 2. This tree offers a visual representation of a population 

with a single social dimension (D = 1), and a hierarchical structure of H = 8 social positions 

(circles) that include a group of G = 6 individuals (black dots) each. Social distance between 
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individuals in the same group is defined as x = 1. Social distance between individuals in different 

groups equals one plus the number of steps it takes to reach the fork in the tree where the 

individuals share the closest common branch. (e.g., distance between individuals i and j in the 

figure is xij = 3). To see how this construction defines a hierarchy, imagine that the social 

dimension in the figure is occupation, where the left four positions (circles) represent 

management, and the right four positions represent workers. The first branching point in the 

tree, then, captures the social difference between management and workers – two classes of 

positions that are maximally distant (x = 4). The second branching point within management 

allows for finer-grained social distances, for instance, between executives and middle 

management. 

Occupation is a single dimension of social life, and one can think of many other 

dimensions, such as education, income, or residential neighborhood. Similar to Centola (2015), 

we introduce multiple dimensions in our model by replicating the tree-like structure in Figure 1 

for each dimension. In order to generate different levels of consolidation, we then apply the 

same scale used to measure social distance between individuals within a given dimension to 

capture the distance between a single individual’s social positions across different dimensions. 

This, latter, distance equals the number of steps up the branching tree to find a common 

ancestor if the two trees were to be super-imposed on one another. For example, when an 

individual is located in the same position (e.g., the left-most circle) across two social dimensions 

(e.g., income and education), the distance between positions is 1. When an individual is located 

in positions that are at the opposite ends of the spectrum for the two dimensions (e.g., the left-
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most circle for income, and the right-most circle for education), the distance between positions 

is 4. 

Using the distance between positions within a single dimension, and the distance 

between positions across dimensions, we control degrees of consolidation (and later 

homophily) as follows. For each of the N individuals, we start with a dimension, d1, and place 

individuals in a position randomly. To determine positions in the other dimensions, we rely on 

the consolidation parameter (b). That is, for each subsequent dimension, d, we draw a random 

social distance (y) among positions for each individual with probability  

 

P(y) = c . e-by       (1) 

 

where b is the consolidation parameter and c is a normalizing constant. We assign social 

position at random among all positions in dimension d less than or equal to social distance y 

from the individual’s position in d1. For intuition, note that when consolidation is at its 

minimum (bmin = -1), the probability for the maximum social distance y is the highest. This can 

be interpreted as lack of consolidation as an individual is assigned a position at random, 

regardless of position in d1. As consolidation increases, individual’s positions become more 

correlated across dimensions (bmax = 3). 

Similar to Watts et al. (2002) and Centola (2015), we set homophily based on the 

shortest social distance (i.e., one plus the number of steps up the tree to reach a common root) 

between a pair of individuals across all social dimensions. This captures the intuitive notion that 

closeness in one dimension (e.g., education) is sufficient to connote affiliation, for example, 
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when geographically and ethnically distinct researchers collaborate on the same project given 

the same social position in the occupational dimension. A useful property of this metric is that it 

violates the triangle inequality, which states that if individuals i and j share a group in one 

dimension such that xij = 1, and similarly, if individuals j and k share a group in another 

dimension such that xjk = 1, it is perfectly feasible to have person i and person k be socially 

distant such that xik > xjk + xij.4 These features reflect how social psychologists have come to 

model perceived similarity in social relationships (Shepard 1987, Tenenbaum and Griffiths 

2002). Yet closeness in just one dimension (shortest social distance) is but a special case of 

social distance. Sensitivity analyses consider alternative metrics for social distance, such as the 

mean social distance between a number of social dimensions. 

After defining social distance between all individuals in the population, we introduce the 

homophily parameter (a) and start building social ties among individuals. Individuals start with 

no ties. We select an individual i randomly from among all individuals with available ties (that is, 

remaining individuals whose existing ties < degree size, Z). For each individual, we draw a 

random social distance x with probability  

 

P(x) = c . e-ax       (2) 

 

where a is the homophily parameter and c is a normalizing constant. We then choose a random 

individual j to establish a social tie from among all individuals at distance x or less from the 

individual i. Note that homophily parameter defines the maximum social distance an individual 

is able to tolerate when making a tie, and thus effectively sets an individual’s “search radius” in 
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selecting network alters. High values of the homophily parameter imply a small search radius, 

and a strong preference for similar others. For intuition, consider that under the maximum level 

of homophily (amax = 3), individuals are most likely to make social contacts with other 

individuals at a social distance of 1 (with constant c set accordingly). Decreasing the homophily 

parameter increases the search radius.  

We continue the tie formation process until individuals in the population, on average, 

have the same pre-set degree size, Z. An important simplification (similar to DG and Centola) is 

to assume ties to be symmetrical. That is, if individual i establishes a tie with individual j, 

individual j is also considered to have established a tie to individual i.  

Modeling diffusion and inequality 

We use Centola’s (2015) architecture outlined above to generate a population of particular 

characteristics, to establish network ties among individuals, and to model the diffusion of a 

beneficial practice. Similar to DG, however, our goal is to observe group-specific diffusion rates, 

and consider their implications for social inequality. This goal requires a modification in 

Centola’s set-up, which assigns all individuals the same adoption threshold, defined as the 

number of adopters in ego’s network necessary to induce the ego to adopt a practice. Centola’s 

model considers practices that diffuse through complex contagion, that is, those with an 

adoption threshold of 2 or higher.  DG’s analysis also focuses on complex contagion, but allows 

the adoption threshold to vary in the population. Indeed, a particular feature of their model is 

to make the adoption threshold an inverse function of an individual’s economic and cultural 

resources. In this model, each individual has a reservation price – a price at which he or she is 

willing to adopt the practice. This price is an increasing function of one’s income, education, 
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and the number of network alters who have already adopted. Then, all else equal, high income 

and high education individuals have the highest reservation prices (and hence the lower implied 

thresholds for adoption). 

We introduce this important feature into Centola’s set-up as follows. First, we let an 

arbitrarily chosen social dimension, d, indicate status for all individuals (similar to income or 

education in the DG model). We designate a given proportion (P) of the population as high 

status, an identical proportion as low status, and the remainder as medium status. Similar to 

Gondal (2014), we vary the proportion of high status individuals in order to test the sensitivity 

of our results to the size of the elite.  

Second, we make the adoption threshold an inverse function of status. Specifically, we 

assign high status individuals an adoption threshold of 2, medium-status individuals a threshold 

of 3, and low-status individuals a threshold of 4. Note that an adoption threshold of 2 and 

higher bring about a complex contagion process (to use Centola and Macy’s (2007) 

terminology). Our results at the population level closely follow those of Centola (see Figure 2).5 

To initiate the diffusion process, like Centola (2015), we randomly seed one high-status 

individual and their network (that is, individual’s first-order ties) as the first adopters. We also 

randomly seed one low-status individual and one medium-status individual (and their 

corresponding networks) such that network externalities are independent of status, and there 

is no inequality in adoption initially. Following the initial seeding, at each time period, all 

individuals who have not adopted the practice simultaneously make decisions on whether or 

not to adopt, and the algorithm outputs the cumulative and group-specific percentages of 
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adopters by status. The process ends after T = 50 time periods, which, as the results indicate, 

provides ample time to reach equilibrium diffusion levels. 

Parameters and robustness checks 

In this study, we focus on the effects of homophily (a) and consolidation (b) on network 

diffusion and inequality; therefore, we keep the remaining parameters fixed. Below, we list all 

the parameters used in generating our results. Centola (2015) has investigated the robustness 

of the results to variations of all parameters, but one. Therefore, here, we report the sensitivity 

of our findings to P (the proportion of high-status individuals in the population), which is the 

only parameter not included in Centola’s analysis, and refer the reader to the original paper for 

all other checks. We have run our models with P ranging from 1/16 to 4/16 and found nearly 

identical results (available upon request) for P equal to 2/16 and 3/16. The implications of 

lower and of higher values of P are discussed in sensitivity analyses. 

Population parameters 

• D = complexity (number of dimensions) = 10 

• H = heterogeneity (number of social positions) in a dimension = 16 

• G = group size (number of people in each position) = 50 

• N = population size = H x G = 800 

• P = proportion of high status individuals = 2/16 

Network parameters 

• a = level of homophily, ranging from -1 to 3 

• b = level of consolidation, ranging from -1 to 3 

• Z = average degree (number of ties for each person) = 5 
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Adoption parameters 

• T = time intervals = 50 

We code our algorithm in R (version 3.3.1). To account for the randomness in initial seeding, 

and in the social positions of individuals by status, we run the simulations 100 times for each 

set of parameters, repeating the entire process of population construction, network formation, 

and diffusion. These repeat runs give us means and standard deviations across all realizations of 

specific sets of social conditions. In what follows, we report not just the average diffusion 

outcomes (as both Centola (2015) and DG do), but also the distribution of diffusion outcomes 

across repetitions. As a methodological point, we note that conclusions based on average 

observations might be misleading for particular parameter combinations, and at particular 

time-points. 

RESULTS 

Overall diffusion under homophily and consolidation 

Before considering group-specific diffusion rates, we investigate overall diffusion patterns, and 

confirm that our results are similar to Centola’s (2015) findings. This is important because our 

model has implemented adoption thresholds that vary inversely with individuals’ status, which 

might disrupt the diffusion dynamics in the original model based on fixed adoption thresholds. 

While we keep the average adoption threshold equal to that in Centola, it is still not obvious 

that diffusion patterns will remain similar with a given proportion (P = 2/16) of high- and low-

status individuals (who require less and more social reinforcement to adopt, respectively). In 

Figure 2, we plot overall equilibrium cumulative adoption rates (z-axis) under status-based 
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thresholds while varying consolidation (y-axis) and homophily (x-axis), keeping all other 

parameters at values listed in the preceding section. 

 

[FIGURE 2 HERE] 

 

Figure 2A and Figure 2B present identical data on the relationship between diffusion, 

consolidation, and homophily (in a 3-dimensional and 2-dimensional representation, 

respectively). In both figures, homophily and consolidation are varied from -1 to 3. Introducing 

status-based thresholds as in DG does not change the relationship between homophily, 

consolidation, and diffusion at the population level. Similar to Centola (2015), we observe that 

(i) homophily and consolidation interact in their effect on diffusion, and (ii) diffusion is most 

successful when neither homophily nor consolidation are very low and at least one is at a 

moderate level.  

We now turn to the implications of our model for DG’s conclusions on how homophily 

affects diffusion and inter-group inequality. While DG treat consolidation as fixed, our model 

allows us to vary it. For the sake of simplicity, in the remainder of this paper, instead of showing 

the full range of values for homophily and consolidation (as in Figure 2), we display results for 

(i) four levels of homophily, including very low (a = -1), low (a = 0), medium (a = 1), and high 

homophily (a = 2), and (ii) two levels of consolidation, low (b = 0.5) and high (b = 2). This 

exposition allows us to observe adoption rates under varying degrees of homophily and 

consolidation, and also over time, similar to DG. 
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We present not just average diffusion patterns, but also the 95 percent confidence 

bands around the average across multiple realizations. To clarify, the variance in simulations is 

not generated by different parameter values, but by randomly occurring differences in the 

social positions or networks of initial seeds under a given set of parameter values. It is 

important to consider the full distribution of simulations to ensure that our results are stable 

(and not driven by volatile realizations of the model), and that the differences we point to 

across multiple scenarios are statistically significant.  

Panel B in Figure 3 shows the cumulative adoption (y-axis) over time (x-axis) by 

homophily in a high-consolidation world. Note that Figure 3 can be understood as a cross-

section of Figure 2, but with the added dimension of time, and confidence bands (gray regions) 

around the average diffusion curve across 100 realizations per a given set of parameters.  

We observe several patterns. First, low homophily (a = 0) leads to the highest diffusion 

level in equilibrium, where the practice consistently reaches full saturation in the population. 

Medium (a = 1) and high (a = 2) levels of homophily lead to much lower – and statistically 

indistinguishable – adoption levels in equilibrium. Second, low homophily (a = 0) leads to a 

slower rate of diffusion initially, compared to medium and high homophily, but then later 

surpasses the equally fast medium and high levels of homophily. In line with DG’s observations, 

then, while homophily boosts adoption speed initially (as the practice can spread quickly among 

the advantaged individuals socially connected to one another), it hurts the equilibrium 

adoption level (as the practice fails to reach the less advantaged individuals). 

 

[FIGURE 3 HERE] 
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Yet, another pattern in the figure seems to defy DG’s expectations. The very low homophily 

case (a = -1) leads not only to the slowest diffusion rate, but also to low overall adoption levels 

in equilibrium. Centola (2015) explains this finding with reference to complex contagion. When 

a practice requires reinforcement from multiple social ties to be adopted, networks need to 

have ‘wide bridges’, that is, overlapping social ties, to effectively spread that practice. Such 

wide bridges are only possible with some degree of homophily and consolidation. Under very 

little homophily, even high levels of consolidation are not sufficient to produce the social 

structure needed to sustain diffusion. (Note that, in Figure 2B, when homophily is less than -0.5, 

diffusion is nearly flat at zero, regardless of the level of consolidation.) Why then, one can ask, 

did DG not observe this pattern in their analysis? 

The answer, we believe, is simple. Because DG base individual’s positions in social 

dimensions on GSS data, and also take a fixed number of individuals (N=2,257) to establish a 

large number of social ties (an average of 28 ties per person, as given by the actual degree sizes 

reported by each individual), the resulting networks ended up with some degree of (incidental) 

homophily even when DG set homophily bias to zero in simulations. After all, even no 

homophily can still bring about homophilous tie formation (especially if there are few network 

alters to choose from). (By comparison, in our model, there are 800 individuals to establish an 

average of 5 ties per person.) Then, DG’s no homophily case is likely to resemble our low 

homophily condition, and there is no contradiction in the findings. 

This significant overlap between DG and our results, however, disappears under low 

consolidation, as shown in panel A in Figure 3. In this case, medium (a = 1) and high (a = 2) 
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levels of homophily, although not statistically distinguishable from one another, lead to much 

higher adoption rates and equilibrium levels compared to low (a = 0) and very low homophily 

(a = -1) conditions. Under low consolidation, then, homophily actually helps both the speed and 

level of diffusion, directly opposing DG’s conclusions based on a high-consolidation setting. 

The explanation for this pattern, again, comes from the conditions for complex 

contagion. Under low consolidation, only higher degrees of homophily can create overlapping 

social ties that are key to successful diffusion. When consolidation and homophily are both low, 

diffusion fails to take off as quickly, and never catches up. 

Comparing panels A and B reveals another insight that is not obvious from Figure 2 (and, 

thus, Centola’s original analysis). The low-consolidation condition (panel A) creates more 

variance in diffusion than its high-consolidation counterpart (panel B), especially for low 

homophily (a = 0). Because Figure 2 only displays the average outcome, it is hard to know 

whether, say, a diffusion level of 0.5 indicates that diffusion consistently reaches half the 

population, or that diffusion is at full saturation (100%) half the time, and fails completely in the 

other half. In Figure 3, we see that the former interpretation (of stable results) is only 

reasonable for high-consolidation worlds, where the confidence bands around the outcome are 

very tight. But, the latter interpretation (of highly volatile realizations) is more accurate for low-

consolidation worlds, where the confidence bands cover a broad range of outcomes. For 

example, for low consolidation and low homophily (a = 0), diffusion reaches 75% at equilibrium 

as many times as it lingers at 25%. The average diffusion curve settles at 50%, and hides this 

large variation. This observation is important for empirical work. Given the greater inherent 

volatility of diffusion outcomes, researchers working in low-consolidation settings might be 
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more likely to reach faulty conclusions based on their observations (compared to those 

operating in high-consolidation settings).  

Group-specific diffusion under homophily and consolidation 

We now turn to diffusion outcomes for different status groups, and inequality in those 

outcomes across groups. Figure 4 shows the log odds ratios of adoption rates between high-

status and low-status adopters (1/8th of the population each) under varying levels of 

homophily, contrasting low consolidation (panel A) and high consolidation (panel B) worlds. 6 

Lower log odds ratios indicate lower inequality. 

 

 [FIGURE 4 HERE] 

 

First, it is important to note that the 95% confidence bands (gray region) around the 

inequality curves are much wider under low homophily when consolidation is low than when 

consolidation is high. This is consistent with the earlier observation that low consolidation 

condition can generate a lot more variance in diffusion outcomes (figure 3, panel A) compared 

to its high consolidation counterpart. 

Second, we observe that, when homophily is at moderate to high levels, log odds ratios 

are larger when consolidation is high. For example, log odds ratios are greater than 1.5 for high 

(a = 2) and medium (a = 1) homophily cases when consolidation is high, but they approach null 

when consolidation is low. This observation is perhaps not surprising. When individuals strongly 

prefer to associate with similar others, less correlation between different dimensions of social 
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life generates less social reinforcement for exclusive groups based on status dimension. Thus, 

one finds less difference between high- and low-status individuals’ outcomes when different 

dimensions of social life are not strongly correlated (i.e., under low consolidation).  

Third, and conversely, when homophily is low (a = 0), log odds ratios are smaller at 

equilibrium when consolidation is high (b = 2) rather than low (b = 0.5). And the reason is 

simple. Under low homophily, a practice reaches full saturation (and hence, zero inequality) 

only under high consolidation (see a = 0 condition in Figure 3, panel B). The practice remains 

moderately diffused (around 50%) under low consolidation (see the same condition in panel A), 

and presents some inequality by status.  

Fourth, when individuals establish ties randomly (a = -1), there is no statistically 

significant difference between high- and low-consolidation worlds in terms of equilibrium 

inequality. The practice remains minimally diffused in both cases: only slightly above 10% under 

low consolidation (Figure 3, panel A), and around 25% but with a larger variance under high 

consolidation (panel B). In both cases, the differences are likely driven by the status imbalance 

in initial seeding, that is, by the fact that there are more initial adopters that are high rather 

than low status. 

Another way of thinking about these results is that, save for the a = -1 case, the relative 

implications of homophily levels on inequality in diffusion become flipped in equilibrium for 

high and low consolidation worlds. The conditions that generate the most to least inequality 

are a = 0, 1, 2 versus a = 2, 1, 0 for low and high consolidation worlds, respectively. The reasons 

why homophily exacerbates inequality in the high consolidation world is intuitive and 

consistent with DG.  The counterintuitive finding or “flip” in low consolidation worlds can be 
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explained by the following intuition. In low consolidation worlds, homophily helps reduce 

inequality at equilibrium by supporting diffusion. Over time, homophily creates the bridge 

width that is necessary for successful diffusion. And inequality is always the lowest when 

diffusion reaches the whole network. Thus, in low consolidation worlds, high homophily 

decreases inequality by supporting overall diffusion. Although there is an initial exacerbating 

effect of homophily on inequality (when diffusion is still taking off, homophily implies that 

diffusion takes place more quickly among higher status individuals), the benefit to diffusion of 

high homophily for high status adopters is eventually tempered by its later support for overall 

diffusion (this starts to occur at T = 15). By contrast in the low consolidation world where 

homophily is also low, diffusion remains incomplete, so inequality stays at the same moderate 

initial level. 

SENSITIVITY ANALYSES 

Centola (2015) has investigated the robustness of the results to variations of all parameters, but 

one (P). Therefore, here, we report the sensitivity of our findings to P (the proportion of high-

status individuals in the population), which is the only parameter not included in Centola’s 

analysis, and refer the reader to the original paper for all other checks. Results are nearly 

identical for P = 2/16, P = 3/16. So when high and low status individuals make up roughly a 

quarter to a third of the population (combined), high homophily can decrease inequality in low 

consolidation worlds by supporting overall diffusion. Figure 5 represents overall adoption 

diffusion success, varying status distribution. 

 

[FIGURE 5 HERE] 
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To understand why the results do not hold for lower (1/4) and higher (4/16 or greater) 

values of P, recall that homophily creates a balkanized network structure that is necessary for 

complex contagions. Recall also that contagion in our set-up is at first more likely among higher 

status individuals who have lower adoption thresholds, but it eventually spills over to the rest 

of the population. When P is too low, there are too few high-status individuals to support the 

level of adoption that then spreads to the entire network. As a result, overall diffusion remains 

low, and the level of inequality remains high, regardless of the level of homophily. When P is 

too high, the opposite happens: Diffusion is very successful, owing to the presence of more 

high-status individuals with lower adoption thresholds. This results in minimal inequality 

regardless of the level of homophily or consolidation. 

In addition to considering different distributions of status, we have also checked the 

sensitivity of our results to the metric for social distance, which is fixed in Watts et al. (2002) 

and Centola (2015) as the shortest social distance across all social dimensions. The shortest 

distance metric has a number of desirable properties and is consistent with how social 

psychologists have come to model perceived similarity in social relationships (Shepard 1987; 

Tenenbaum and Griffiths 2002). While a change in position in any social position can change 

shortest distance, and different social dimensions determine social distance for different pairs 

of individuals, some might consider this metric relatively “univariate” due to the fact that 

closeness in just one dimension can render distance in other dimensions irrelevant. We 

recognize that although this precise property makes it attractive to some scholars, it is but one 

way to conceptualize social distance. Therefore, we consider alternative metrics here.  
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In particular, we set homophily based on the mean distance within the closest X 

dimensions between a pair of individuals, incrementally increasing X from 1 (as in the main 

results). Our findings are robust for X = 1, 2, and 3 dimensions, indicating that even when 

individuals are using a more “multivariate” metric of social distance, there are some, low, levels 

of consolidation in which higher homophily improves diffusion and diminishes inequality. 

Evidence of this pattern is presented in Figure 6, which replicates Figure 4 but uses a mean of 3 

dimensions rather than shortest distance to inform homophily. Here, the point remains that 

under some levels of low consolidation, moderate homophily (a = 2 and a = 1) can yield lower 

inequality than low homophily (a = -0.5). 

 

[FIGURE 6 HERE] 

 

When homophily is based on the average distance between increasingly many social 

dimensions, diffusion starts to be increasingly unsuccessful at low consolidation, and is not 

redeemed by high homophily. This is because this metric necessarily results in greater or equal 

(but never smaller) distances such that the implications of any level of homophily are 

intensified. As Figure 7 demonstrates, diffusion begins to become depressed at low 

consolidation and high homophily when homophily is based on the average of four social 

dimensions. (See figure A2 in the Appendix for a two-dimensional representation of diffusion 

outcomes.) Put differently, as the number of salient dimensions increases, our population 

becomes too differentiated. In a highly-differentiated population, one needs lower levels of 

consolidation to make up for the network segregation brought on by homophily (in order to 
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observe successful diffusion). When we include four or more social dimensions in our social 

distance measure, we start to see that there is no level of consolidation that is low enough to 

counter the effect of homophily, and therefore, no parameter combination under which 

diffusion is successful.  

This pattern indicates that the Centola architecture may not be ideal for considering a 

world in which more than a few social dimensions are relevant. While the work that is 

immediately relevant to ours tends to model distance in terms of the shortest distance or the 

mean of just a few (such as 3 in the case of DG), there are other ways to conceptualize social 

distance (e.g., Boutyline 2017), and it is important to recognize the limited scope of our model. 

 

[FIGURE 7 HERE] 

 

 Finally, it is worth noting that our findings hold even when we consider effective 

homophily – that is, observed homophily (which can be higher than affective homophily that is 

set by our model parameter, a). We define effective homophily here as the ratio of average 

social distance between dyads in the population that do not share a tie and average social 

distance between dyads that do share a tie. The intuition here is that larger effective homophily 

means smaller social distance among dyads that share a tie compared to dyads that do not 

share a tie. Basically, consistent with existing ABMs (Centola 2011, DiMaggio and Garip 2011) 

and recent empirical work (Smith et al. 2016, Wimmer and Lewis 2010), our model represents 

homophily as the probability of association based on social distance between individuals. But, 

consolidation can also induce homophily independent of our homophily parameter, a. 
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Therefore, it is important to see if our results remain similar when we consider effective 

homophily in the population. Below, we show that our core finding, that inequality can 

decrease with homophily under low consolidation, is robust to using a measure of effective 

rather than affective homophily. 

 

[FIGURE 8 HERE] 

 

Figure 8 replicates Figure 4 but with labels for effective instead of affective homophily, 

and shows similar patterns. (The four homophily levels displayed in the high and consolidation 

panels are not identical across the two figures, which is expected given that consolidation feeds 

into effective homophily, and makes it higher than the affective homophily set by the model). 

Similar to Figure 4, in Figure 8, we see that high levels of effective homophily can diminish, not 

exacerbate, inequality under low consolidation (panel 8A). (Figure A1 in the Appendix displays a 

two-dimensional representation of diffusion outcomes.) 

DISCUSSION 

DG’s work unequivocally argues that homophily exacerbates inequality in adoption if a practice 

is subject to network externalities, and if the practice is initially more likely to be adopted by 

high-status individuals. Our findings confirm some of their findings, while qualifying or 

extending others.  

Confirming DG, we find that homophily exacerbates adoption inequality if consolidation 

is moderate to high. When social dimensions are strongly correlated, increasing homophily 
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makes networks more segregated by status, and locks the practice into network regions where 

high-status actors cluster. 

Qualifying DG, we show that homophily reduces adoption inequality if consolidation is 

low. When social dimensions are largely independent, increasing homophily is not sufficient to 

segregate social networks, but it is helpful to create overlapping social ties, or ‘wide bridges’, 

across which behaviors can spread. Regardless of level of consolidation, homophily creates an 

advantage for high status initial adopters because it makes it more likely for other high-status 

adopters to be closely connected to the initial adopters. When consolidation is low, this 

advantage disappears if homophily is high enough to generate the overlapping social ties for 

diffusion to reach lower status individuals who require more social reinforcement for adoption. 

In this case, eventual successful diffusion by low status individuals overcomes inequality. 

Extending DG, we observe that some homophily is needed for effective diffusion. Under 

very low homophily (a case DG could not test effectively due to the constraints of their data), a 

network does not have the sufficient structure to coordinate behavior, regardless of the level of 

consolidation in the population. 

We also make a few finer points. First, low consolidation worlds, all else equal, create 

more variance in diffusion and inequality outcomes compared to high consolidation cases. 

Second, the diffusion and inequality trajectories shift over time. For example, while diffusion is 

quite fast in a high homophily condition, its equilibrium level is low compared to a low 

homophily condition. Or, while inequality increases steeply at first in a high homophily setting, 

it can end up at a lower equilibrium compared to that in a low homophily case. Put differently, 
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one can settle on the wrong conclusions if one observes only average values, or collects data 

mid-process (that is, prior to equilibrium). 

CONCLUSION 

A major insight in sociology suggests that social networks can provide access to useful 

resources or positive influences that help individuals succeed (Portes 1998). Another key insight 

indicates that early advantages can lead to benefits that pre-dispose individuals to obtain more 

advantages over time (Merton 1986, DiPrete and Eirich 2006). These two ideas go well together 

in that social networks can be a mechanism for generating cumulative advantage. 

Recent formal and computational analyses have made this connection explicit by 

studying homophily. Studies have linked, for example, network effects in job search to wage 

inequality (Montgomery 1991, Calvó-Armengol and Jackson 2004) or the peer effects in 

educational choice to disparities in educational attainment between groups (Manzo 2013). 

DiMaggio and Garip (2011) have offered arguably the most general theoretical statement, and 

identified three necessary conditions for network effects to exacerbate inequality in the 

adoption of a beneficial practice. First, the authors have argued, adoption should be more likely 

among the more advantaged individuals (for example, high earners or highly educated). 

Second, adoption should be more likely if one’s peers have adopted. That is, network effects 

should be positive. And, third, and most importantly, networks should exhibit homophily 

(tendency for ties among similar individuals) with respect to traits related to adoption. 

In this paper, we extend DiMaggio and Garip’s (2011) analysis, and discover a fourth, 

and crucial, condition neglected in prior work. For social networks to exacerbate inequality, we 

argue, characteristics in a population need to consolidated (that is, highly correlated). Without 
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consolidation, homophily in any given characteristic is not be sufficient to segregate social 

networks, and isolate adoption to particular segments of the population. 

Earlier work has not considered consolidation as a factor in network formation either 

because it has relied on formal analysis where networks were considered given (e.g., Calvó-

Armengol and Jackson 2004) or because it has used computational models calibrated to a 

particular real-life setting (e.g., DiMaggio and Garip 2011, Manzo 2013). 

We draw inspiration from Blau and Schwartz’s work (1984, p.12), which declared 

consolidation to be of “prime significance for intergroup relations.” Recently, Centola (2015) 

confirmed this insight with an agent-based model, and demonstrated that homophily and 

consolidation together shape network structure and diffusion outcomes.  

In this paper, we start with Centola’s generic model, and use it to first replicate, and 

then to extend, DiMaggio and Garip’s findings. We generate a sample of synthetic agents, and 

introduce status differences between them. We then give high-status individuals a small 

advantage in adoption. We vary levels of homophily and consolidation, and observe whether 

initial advantages by status are compounded via network effects. 

We report several findings. First, similar to DiMaggio and Garip, we find that homophily 

exacerbates adoption inequality, but only if consolidation is relatively high. Second, different 

from DiMaggio and Garip, we show that homophily actually alleviates adoption inequality if 

consolidation is low.  

These patterns all owe to an important insight gained from Centola’s (2015) analysis: 

Low to moderate levels of homophily and consolidation generate social networks with 
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overlapping ties, or ‘wide bridges’, that can support the diffusion of a practice through 

reinforcement from multiple network alters (or, what Centola and Macy (2007) call ‘complex 

contagion’). Higher levels of homophily or consolidation, however, lead to segregated or 

balkanized social ties, and can stop diffusion in its tracks. 

In a high consolidation world, increasing homophily brings about the latter, detrimental, 

structure for diffusion, and also makes the status-based divide in adoption deeper. But, in a low 

consolidation world, rising homophily leads to the former, favorable, structure for contagion, 

and alleviates status-based differences in adoption. 

Our analysis allows us to make a number of methodological points. First, prior work 

using agent-based models routinely presents the average diffusion curve (computed over 

multiple simulation runs), but not the confidence bands around the average. We call future 

research to be more attentive to, and report, the variation across multiple realizations. In our 

case, the interpretation of our results would be quite different had we just relied on just the 

average patterns. Second, while we recognize that agent-based models can be a useful tool 

when calibrated to real-life cases (as in DiMaggio and Garip’s work), we also argue that such 

applications might not always lead to fully generalizable conclusions. Researchers should pay 

more attention to how much of their results are driven by the model parameters, and how 

much is due to the particular setting the parameters or data are set to capture.  

We believe our work opens to doors to studying many other factors that we did not 

consider in our analysis. For example, recent work considers the interactions between different 

kinds of homophily (e.g., that based on individual choice and that induced by population 

compositions in institutional settings) in producing particular network structure and diffusion 
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patterns (Kossinets and Watts 2006). Recent work also shows how adoption of a practice can 

pave the way to establishing new dimensions for status differentiation, and deepen inequality 

(Gondal 2014). Future work, therefore, can incorporate patterns of induced homophily or path-

dependent diffusion trajectories for multiple practices into our set-up.  

Recent work also considers how population processes (such as in- and out-migration) 

can affect population composition, network structures, as well as diffusion outcomes (Garip 

and Zhao, forthcoming), suggesting another possible direction of extension. Finally, qualitative 

work finds that individuals’ perceptions of social norms (and their respective adherence to 

them) may depend not just on their position in the network, but on the particular patterns of 

social interactions, and in particular, to degrees of exposure to network peers (Shepherd 2017). 

Therefore, future attention could also be given to incorporating social interaction and exposure 

into modeling frameworks with differential impacts on contagion.  

[APPENDIX FIGURES] 
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ENDNOTES 

 
1 The authors used Skvoretz’s (1990) definition of homophily (or ‘tau bias’) which is the 

probability that an ego will select a similar alter above and beyond the probability of such a 

pairing under random choice. 

 

2 DG defined network externalities broadly as applicable to any practice whose value to an 

individual is an increasing function of the prior adopters in that individual’s network. The 

authors operationalized this mechanism with a ‘network term’ included in the reservation 

price. This term implied that an individual’s willingness to adopt a practice (i.e., the price he or 

she is accepting to pay for it) increases linearly with the share of adopters in his or her network. 

In a subsequent review article, DiMaggio and Garip (2012) offered a more specific definition for 

network externalities, and differentiated it from other mechanisms for network effects such as 

social facilitation or normative influence. (See Rossman, Chiu and Mol (2008) for a similar 

analytic framework.) According to the updated definition, the authors argued, network 

externalities need to be operationalized as a function of the number (not share) of adopters in 

an individual’s network. In this paper, we use the updated definition, and operationalize 

network externalities with an adoption threshold that depends on the number of adopters. This 

choice carries an implicit assumption that an individual only cares about the adopters in his or 
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her network and is indifferent to the non-adopters (Granovetter 1978, Centola and Macy 2007). 

See the methods section for details. 

 

3 Another structural factor shaping homophily is the institutional setting. McPherson et al. 

(2001) distinguish homophily based on individual choice from homophily induced by institutions 

such as schools (Fischer 1977), voluntary associations (McPherson and Smith-Lovin 1987), or 

work environments (Reskin et al. 1999). Such institutions might include particular group 

compositions, and thus, exhibit induced homophily in ties even when individuals are selecting 

alters randomly. Induced homophily is a crucial concept, but it is hard to incorporate into a 

formal or computational modeling framework in abstract form (that is, without first defining 

relevant institutions and deciding on their recruitment criteria). Thus, we do not focus on it in 

this paper. 

 

4 We ran a robustness check with an alternative distance measure that takes the mean social 

distance across the three dimensions along which two actors are most similar. The results 

continued to support our main conclusions.  

 

5 We conducted a robustness check where we subjected all status groups to a complex 

contagion process. This exercise involved setting the adoption thresholds to 2, 3, and 4 for high, 

medium, and low status groups, respectively, and increasing the average degree size in the 

population from 5 to 10 (in order to allow for successful diffusion). Our results remained 

qualitatively similar.  
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6 The log odds ratios between high-status and medium-status adopters are not reported 

because they are qualitatively similar to the log odds ratios between high-status and low-status 

adopters. The only difference is that they are, unsurprisingly, slightly smaller.  

 

 



TABLES	AND	FIGURES	
	
Figure	1	Architecture	of	a	social	dimension.	Each	group	contains	G	individuals	that	share	a	
common	social	position	(circle).	The	distance	x	between	individuals	(black	dots)	in	the	same	
group	is	1.	The	distance	between	individuals	in	different	groups	equals	one	plus	the	steps	it	
takes	to	reach	a	common	root	in	the	tree.	The	structure	has	L	=	4	levels,	and	a	branching	ratio	
of	B	=	2.	

	
	



Figure	2	Overall	diffusion	with	status-based	adoption	thresholds.	Equilibrium	cumulative	
adoption	rate	(z-axis)	by	homophily	(x-axis)	and	consolidation	(y-axis)	over	100	realizations.	All	
other	parameters	are	fixed	at:	D	=	10,	H	=	16,	G	=	50,	P	=	2/16,	Z	=	10.		
	

A.	3D	Contour	Plot		 	 	 	 	 B.	Image	Plot	
		 				

			



Figure	3	Overall	diffusion	by	homophily	at	low	and	high	consolidation.	Cumulative	adoption	
rate	(y-axis)	over	time	(x-axis)	by	homophily,	with	95%	confidence	bands	(gray	region),	at	low	
consolidation	(panel	A)	and	high	consolidation	(panel	B).	All	other	parameters	are	fixed	at:	D	=	
10,	H	=	16,	G	=	50,	P	=	2/16,	Z	=	10.	Means	and	variances	are	calculated	from	100	realizations	
per	set	of	parameters.	
	
											A.	Low	Consolidation	(b	=	0.5)	 	 									B.	High	Consolidation	(b	=	2)		
				

	 	



Figure	4	Inequality	in	diffusion	by	homophily	under	low	and	high	consolidation.	Log	odds	
ratios	of	adoption	probabilities	between	high-status	and	low-status	individuals	(y-axis)	over	
time	(x-axis)	by	homophily,	with	95%	confidence	bands	(gray	region),	under	low	(panel	A)	and	
high	(panel	B)	consolidation.	All	other	parameters	are	fixed	at:	D	=	10,	H	=	16,	G	=	50,	P	=	2/16,	
Z	=	10.	Means	and	variances	are	calculated	from	100	realizations	per	set	of	parameters.	
	
									A.	Low	Consolidation	(b	=	0.5)	 																					B.	High	Consolidation	(b	=	2)					
	

	 			 	
	



		
Figure	5	Overall	diffusion	with	status-based	adoption	thresholds,	varying	status	distribution	
(P).	Equilibrium	cumulative	adoption	rate	(z-axis)	by	homophily	(x-axis)	and	consolidation	(y-
axis)	over	100	realizations.	All	other	parameters	are	fixed	at:	D	=	10,	H	=	16,	G	=	50,	Z	=	10.	
	
A.	P	=	1/16	 	 	 	 	 	 B.	P	=	2/16	 		

	 						 	
C.		P	=	3/16	 	 	 	 	 	 D.	P	=	4/16	

						 	



Figure	6	Inequality	in	diffusion	by	homophily	under	low	and	high	consolidation	with	distance	
based	on	mean	of	3	social	dimensions.	Log	odds	ratios	of	adoption	probabilities	between	high-
status	and	low-status	individuals	(y-axis)	over	time	(x-axis)	by	homophily,	with	95%	confidence	
bands	(gray	region),	under	low	(panel	A)	and	high	(panel	B)	consolidation.	All	other	parameters	
are	fixed	at:	D	=	10,	H	=	16,	G	=	50,	P	=	2/16,	Z	=	10.	Means	and	variances	are	calculated	from	
100	realizations	per	set	of	parameters.	
	
											A.	Low	Consolidation	(b	=	-0.5)		 									B.	High	Consolidation	(b	=	2)					
	

			 				 	



	
Figure	7	Overall	diffusion	with	status-based	adoption	thresholds,	varying	distance	metric.	
Equilibrium	cumulative	adoption	rate	(z-axis)	by	homophily	(x-axis)	and	consolidation	(y-axis)	
over	100	realizations.	All	other	parameters	are	fixed	at:	D	=	10,	H	=	16,	G	=	50,	P	=	2/16,	Z	=	10.	
	
A.	Minimum	 	 	 	 	 	 							B.	Mean	of	2	 	 				 	 	

									 	
C.		Mean	of	3	 	 	 	 	 										 						D.	Mean	of	4	

									 						



Figure	8	Inequality	in	diffusion	by	“effective”	homophily	under	low	and	high	consolidation.	
Log	odds	ratios	of	adoption	probabilities	between	high-status	and	low-status	individuals	(y-axis)	
over	time	(x-axis)	by	homophily,	with	95%	confidence	bands	(gray	region),	under	low	(panel	A)	
and	high	(panel	B)	consolidation.	All	other	parameters	are	fixed	at:	D	=	10,	H	=	16,	G	=	50,	P	=	
2/16,	Z	=	10.	Means	and	variances	are	calculated	from	100	realizations	per	set	of	parameters.	
	
									A.	Low	Consolidation	(b	=	0.5)	 																				B.	High	Consolidation	(b	=	2)					
	

	 	



APPENDIX		
Figure	A1	Overall	diffusion	with	status-based	adoption	thresholds,	varying	status	distribution	
(P).	Equilibrium	cumulative	adoption	rate	(z-axis)	by	homophily	(x-axis)	and	consolidation	(y-
axis)	over	100	realizations.	All	other	parameters	are	fixed	at:	D	=	10,	H	=	16,	G	=	50,	Z	=	10.	
	
A.	P	=	1/16	 	 	 	 	 	 B.	P	=	2/16	 			
	

		 	
	
C.		P	=	3/16	 	 	 	 	 	 D.	P	=	4/16	

	



Figure	A2	Overall	diffusion	with	status-based	adoption	thresholds,	varying	distance	metric.	
Equilibrium	cumulative	adoption	rate	(z-axis)	by	homophily	(x-axis)	and	consolidation	(y-axis)	
over	100	realizations.	All	other	parameters	are	fixed	at:	D	=	10,	H	=	16,	G	=	50,	P	=	2/16,	Z	=	10.	
	
A.	Minimum	 	 	 	 	 	 						B.	Mean	of	2	 	
	

					 	
C.		Mean	of	3	 	 	 	 	 										 					D.	Mean	of	4	
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